New generalization of midpoint type inequalities for fractional integral
نویسندگان
چکیده
منابع مشابه
On Generalization of Cebysev Type Inequalities
In this paper, we establish new Cebysev type integral inequalities involving functions whose derivatives belong to L_{p} spaces via certain integral identities.
متن کاملON GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
In this paper, a new general identity for differentiable mappings via Riemann-Liouville fractional integrals has been defined. By using of this identity, author has obtained new estimates on generalization of Hadamard, Ostrowski and Simpson type inequalities for functions whose derivatives in absolutely value at certain powers are s-convex in the second sense.
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملIntegral Inequalities for h(x)-Riemann-Liouville Fractional Integrals
In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.
متن کاملSome Weighted Integral Inequalities for Generalized Conformable Fractional Calculus
In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of the Alexandru Ioan Cuza University - Mathematics
سال: 2021
ISSN: ['2344-4967', '1221-8421']
DOI: https://doi.org/10.47743/anstim.2021.00009